452 research outputs found

    Bayesian Inference on Matrix Manifolds for Linear Dimensionality Reduction

    Full text link
    We reframe linear dimensionality reduction as a problem of Bayesian inference on matrix manifolds. This natural paradigm extends the Bayesian framework to dimensionality reduction tasks in higher dimensions with simpler models at greater speeds. Here an orthogonal basis is treated as a single point on a manifold and is associated with a linear subspace on which observations vary maximally. Throughout this paper, we employ the Grassmann and Stiefel manifolds for various dimensionality reduction problems, explore the connection between the two manifolds, and use Hybrid Monte Carlo for posterior sampling on the Grassmannian for the first time. We delineate in which situations either manifold should be considered. Further, matrix manifold models are used to yield scientific insight in the context of cognitive neuroscience, and we conclude that our methods are suitable for basic inference as well as accurate prediction.Comment: All datasets and computer programs are publicly available at http://www.ics.uci.edu/~babaks/Site/Codes.htm

    Neural Network Gradient Hamiltonian Monte Carlo

    Full text link
    Hamiltonian Monte Carlo is a widely used algorithm for sampling from posterior distributions of complex Bayesian models. It can efficiently explore high-dimensional parameter spaces guided by simulated Hamiltonian flows. However, the algorithm requires repeated gradient calculations, and these computations become increasingly burdensome as data sets scale. We present a method to substantially reduce the computation burden by using a neural network to approximate the gradient. First, we prove that the proposed method still maintains convergence to the true distribution though the approximated gradient no longer comes from a Hamiltonian system. Second, we conduct experiments on synthetic examples and real data sets to validate the proposed method

    Flexible Bayesian Dynamic Modeling of Correlation and Covariance Matrices

    Full text link
    Modeling correlation (and covariance) matrices can be challenging due to the positive-definiteness constraint and potential high-dimensionality. Our approach is to decompose the covariance matrix into the correlation and variance matrices and propose a novel Bayesian framework based on modeling the correlations as products of unit vectors. By specifying a wide range of distributions on a sphere (e.g. the squared-Dirichlet distribution), the proposed approach induces flexible prior distributions for covariance matrices (that go beyond the commonly used inverse-Wishart prior). For modeling real-life spatio-temporal processes with complex dependence structures, we extend our method to dynamic cases and introduce unit-vector Gaussian process priors in order to capture the evolution of correlation among components of a multivariate time series. To handle the intractability of the resulting posterior, we introduce the adaptive Δ\Delta-Spherical Hamiltonian Monte Carlo. We demonstrate the validity and flexibility of our proposed framework in a simulation study of periodic processes and an analysis of rat's local field potential activity in a complex sequence memory task.Comment: 49 pages, 15 figure

    Triggers and maintenance of multiple shifts in the state of a natural community

    Get PDF
    Ecological communities can undergo sudden and dramatic shifts between alternative persistent community states. Both ecological prediction and natural resource management rely on understanding the mechanisms that trigger such shifts and maintain each state. Differentiating between potential mechanisms is difficult, however, because shifts are often recognized only in hindsight and many occur on such large spatial scales that manipulative experiments to test their causes are difficult or impossible. Here we use an approach that focuses first on identifying changes in environmental factors that could have triggered a given state change, and second on examining whether these changes were sustained (and thus potentially maintained the new state) or transitory (explaining the shift but not its persistence). We use this approach to evaluate a community shift in which a benthic marine species of filter feeding sea cucumber (Pachythyone rubra) suddenly came to dominate subtidal rocky reefs that had previously supported high abundances of macroalgae, persisted for more than a decade, then abruptly declined. We found that a sustained period without large wave events coincided with the shift to sea cucumber dominance, but that the sea cucumbers persisted even after the end of this low wave period, indicating that different mechanisms maintained the new community. Additionally, the period of sea cucumber dominance occurred when their predators were rare, and increases in the abundance of these predators coincided with the end of sea cucumber dominance. These results underscore the complex nature of regime shifts and illustrate that focusing separately on the causes and maintenance of state change can be a productive first step for analyzing these shifts in a range of systems

    Geodesic Lagrangian Monte Carlo over the space of positive definite matrices: with application to Bayesian spectral density estimation

    Get PDF
    We present geodesic Lagrangian Monte Carlo, an extension of Hamiltonian Monte Carlo for sampling from posterior distributions defined on general Riemannian manifolds. We apply this new algorithm to Bayesian inference on symmetric or Hermitian positive definite (PD) matrices. To do so, we exploit the Riemannian structure induced by Cartan's canonical metric. The geodesics that correspond to this metric are available in closed-form and – within the context of Lagrangian Monte Carlo – provide a principled way to travel around the space of PD matrices. Our method improves Bayesian inference on such matrices by allowing for a broad range of priors, so we are not limited to conjugate priors only. In the context of spectral density estimation, we use the (non-conjugate) complex reference prior as an example modelling option made available by the algorithm. Results based on simulated and real-world multivariate time series are presented in this context, and future directions are outlined
    corecore